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                                                                                             Abstract

Network Flow Problems have always been among the best studied combinatorial 

optimization problems. These problems are central problems in operations research, 

computer science, and engineering and they arise in many real world applications. Flow 

networks are very useful to model real world problems like, current flowing through 

electrical networks, commodity flowing through pipes and so on. Maximum flow 

problem is the classical network flow problem. In this problem, the maximum flow which 

can be moved from the source to the sink is calculated without exceeding the maximum 

capacity. Once, the maximum flow problem is solved it can be used to solve other 

network flow problems also. Maximum flow problem is thoroughly studied in this thesis 

and the general algorithm is explained in detail to solve it. Then other network flow 

problems like, Minimam Cost Flow, Transshipment, Transportation, and Assignment 

problems are also briefly explained and shown that how they can be converted into 

maximum flow problem. 

The Ford-Fulkerson algorithm is the general algorithm which can solve all the network 

flow problems. The improvement of the Ford Fulkerson algorithm is Edmonds-Karp 

algorithm which uses BFS procedure instead of DFS to find an augmenting path.

Next the modified Edmonds-Karp algorithm is designed to solve the maximum flow 

problem in efficient manner. One real world problem is taken, it is converted into 

network flow graph and the new algorithm is implemented to solve the problem. The 

same problem is solved using Edmonds-Karp algorithm also and both algorithms are 

compared in terms of different parameters. Finally, it is proved that the modified 

algorithm performs better in most cases and the new algorithm is implemented in C.  
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Chapter 1

Introduction

Network flow problems are central problems in operations research, computer 

science, and engineering and they arise in many real world applications [5].

Everywhere we look in our daily lives, networks are apparent. Electrical and power

networks bring lighting and entertainment into our homes. Telephone networks permit

us to communicate with each other almost effortlessly within our local communities

and across regional and international borders. National highway systems, rail 

networks, and airline service networks provide us with the means to cross great

geographical distances to accomplish our work, to see our loved ones, and to visit new 

places and enjoy new experiences. Manufacturing and distribution networks give us 

access to life's essential food stock and to consumer products. And computer

networks, such as airline reservation systems, have changed the way we share 

information and conduct our business and personal lives.

In all of these problem domains, and in many more, we wish to move some entity 

(electricity, a consumer product, a person or a vehicle, a message) from one point to 

another in an underlying network, and to do so as efficiently as possible, both to 

provide good service to the users of the network and to use the underlying (and 

typically expensive) transmission facilities effectively. In other words, this aim is

what this thesis is all about. This thesis is about to learn how to model application 

settings as mathematical objects known as network flow problems and to study 

various ways (algorithms) to solve the resulting models [3].

Starting with early work in linear programming and the study of such problems has 

led to continuing improvements in the efficiency of network flow algorithms. Here 

the algorithms whose running time is small as a function of the size of the network 

and the numbers involved (e.g. capacities, nodes, or flows) are taken into 

consideration. In spite of the long history of this study, many substantial results have 

been obtained within the last several years. In this thesis some of these recent 

developments and the ideas behind them are examined [5].
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Network flows is a problem domain that lies at the cusp between several fields of 

inquiry, including applied mathematics, computer science, engineering, management,

and operations research. The field has a rich and long tradition, tracing its roots back 

to the work of Gustav Kirchhof and other early pioneers of electrical engineering and 

mechanics who first systematically analyzed electrical circuits. This early work set the 

foundations of many of the key ideas of network flow theory and established 

networks (graphs) as useful mathematical objects for representing many physical 

systems. Much of this early work was descriptive in nature, answering such questions

as: If we apply a set of voltages to a given network, what will be the resulting current 

flow? If we have alternative ways to use a network (i.e., send flow), which alternative 

will be most cost-effective? 

In this thesis, the main classical network flow problems are the maximum flow

problem and the minimum-cost flow problem [3].

1.1  Introduction to  Network  Flow Problems [1]

There are numerous problems that can be viewed as a network of vertices and edges, 

with a capacity associated with each edge over which commodities flow. The

algorithms found in this thesis are, in many ways, the direct product of the need to 

solve these specific classes of problems. 

Maximum Flow

Given a network that shows the potential capacity over which goods can be shipped 

between two locations, compute the maximum flow supported by the network.

Bipartite Matching

Given a set of applicants, who have been interviewed for a set of job openings, find a 

matching that maximizes the number of applicants selected for jobs for which they are 

qualified.

Minimum Cost Flow

To solve a Minimum Cost Flow problem we need only construct a flow network 

graph and ensure that it satisfies three criteria —capacity constraint, flow 

conservation, and skew symmetry—as well as two additional criteria:

-> Supply satisfaction

-> Demand satisfaction
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Transportation

Determine the most cost-effective way to ship goods from a set of supplying factories 

to a set of retail stores selling these goods. 

Transshipment

Determine the most cost-effective way to ship goods from a set of supplying factories 

to a set of retail stores selling these goods, while potentially using a set of warehouses 

as intermediate stations.

Assignment

Given a set of tasks to be carried out by a set of employees, find an assignment that 

minimizes the overall expense when different employees may cost different amounts 

based upon the task to which they are assigned.

1.2  Relationship  Between  Network  Flow  Problems

One way to explain how these specialized problems are solved is to describe the 

relationship between network flow problems. Figure 1.1 shows the relationships 

between these problems in thin, labeled rectangles, with brief descriptions in the 

larger boxes. A more general instance of a problem is related to a more specific 

instance of the problem by a directed edge. For example, the Transportation problem 

is a specialized instance of the Transshipment problem because transportation graphs 

do not contain intermediate transshipment nodes. Thus a program that solves the 

Transshipment problem can be immediately applied to solve Transportation problems.

The Ford-Fulkerson algorithm, which solves the Maximum Flow problem, can be 

immediately applied to solve Bipartite Matching problems, as shown in Figure 1.1

[1]. Upon further reflection, the approach outlined in Ford-Fulkerson can be 

generalized to solve the more powerful Minimal Cost Flow problem, which enables 

us to immediately solve the Transshipment, Transportation, and Assignment problems

[7].
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Figure 1.1 Relationship between network flow problems
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Chapter 2

Literature Review

2.1  Introduction to Network Flow Concepts

As depicted in Figure 2.1 [1], the common abstraction that models a flow network is a 

directed graph G = (V, E), where V is the set of vertices and E is the set of edges over 

these vertices. The graph itself is typically connected (though not every edge need be 

present). A special source vertex s belongs to V produces units of a commodity that 

flow through the edges of the graph to be consumed by a sink vertex t belongs to V 

(also known as the target or terminus). A flow network assumes that the supply of 

units produced is infinite and that the sink vertex can consume all units it receives

                   Figure 2.1 Sample flow network graph

Each edge (u, v) has a flow f (u, v) that defines the number of units of the commodity 

that flows from u to v. An edge also has a capacity c (u, v) that constrains the 

maximum number of units that can flow over that edge. In Figure 2.1, each vertex is 

numbered (with vertices s and t clearly marked) and each edge is labeled as f/c, 

showing the flow over that edge and the maximum possible flow. The edge between s 

and v1, for example, is labeled 5/10, meaning that 5 units flow over that edge, which 

can sustain a capacity of up to 10. When no units are flowing over an edge (as is the 

case with the edge between v5 and v2), only the capacity is shown, outlined in a gray

box. The following criteria must be satisfied for any feasible flow f through a 

network:
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Capacity constraint

The flow f (u, v) through an edge cannot be negative and cannot exceed the capacity 

of the edge c (u, v), 0 ≤ f (u, v) ≤ c (u, v). If an edge (u, v) doesn’t exist in the 

network, then c (u, v) = 0.

Flow conservation

Aside from the source vertex s and sink vertex t, each vertex u belongs to V must 

satisfy the property that the sum of f (v, u) for all edges (v, u) in E (the flow into u) 

must equal the sum of f (u, w) for all edges (u, w) belongs to E (the flow out of u). 

This property ensures that flow is neither produced nor consumed in the network, 

except at s and t.

Skew symmetry

For consistency, the quantity f (v, u) represents the net flow from vertex u to v. This 

means that it must be the case that f (u, v) = – f (v, u); this holds even if both edges (u, 

v) and (v, u) exist in a directed graph (see Figure 2.1).

In the ensuing algorithms a network path referred is a non-cyclic path of unique 

vertices <v1, v2, … , vn> involving n–1 consecutive edges (vi, vj) in E. In the directed 

graph shown in Figure 2.1, one possible network path is <v3, v5, v2, v4>. In a network 

path, the direction of the edges can be ignored [1].

The value of a flow f is defined as

| f | =∑ v ∈ V  f (s, v) ,

That is, the total flow out of the source. Here, the |·| notation denotes flow value, not

absolute value or cardinality.

Now the three flow properties are briefly explored. The capacity constraint simply

says that the flow from one vertex to another must not exceed the given capacity.

Skew symmetry is a notational convenience that says that the flow from a vertex u to 

a vertex v is the negative of the flow in the reverse direction. The flow-conservation 

property says that the total flow out of a vertex other than the source or sink is 0. By 

skew symmetry, we can rewrite the flow-conservation property as
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∑ u ∈ V  f (u, v) = 0, for all v ∈ V − {s, t}. 

That is, the total flow into a vertex is 0.

When neither (u, v) nor (v, u) is in E, there can be no flow between u and v, and f (u, 

v) = f (v, u) = 0. Now the flow properties deal with flows that are positive. The total 

positive flow entering a vertex v is defined by

∑ u ∈ V f (u, v)>0   f (u, v)         

The total positive flow leaving a vertex is defined symmetrically. The total net flow at 

a vertex is defined to be the total positive flow leaving a vertex minus the total 

positive flow entering a vertex. One interpretation of the flow-conservation property 

is that the total positive flow entering a vertex other than the source or sink must equal 

the total positive flow leaving that vertex. This property, that the total net flow at a 

vertex must equal 0, is often informally referred to as “flow in equals flow out” [2].

2.2  Networks  with  Multiple  Sources and Sinks [2]

A maximum-flow problem may have several sources and sinks, rather than just one of 

each. The Lucky Puck Company, for example, might actually have a set of m factories 

{s1, s2, . . . , sm} and a set of n warehouses {t1, t2, . . . , tn}, as shown in Figure 2.2(a)

[2]. Fortunately, this problem is no harder than ordinary maximum flow.

The problem of determining a maximum flow in a network with multiple sources and 

multiple sinks is reduced to an ordinary maximum-flow problem. Figure 2.2(b) [2]

shows how the network from (a) can be converted to an ordinary flow network with 

only a single source and a single sink. A supersource s and a directed edge (s, si) is 

added with capacity c (s, si ) = ∞ for each i = 1, 2, . . . ,m. A new supersink t and a 

directed edge (ti , t) with capacity c (ti , t) = ∞ for each i = 1, 2, . . . , n. Intuitively, any 

flow in the network in (a) corresponds to a flow in the network in (b), and vice versa. 

The single source s simply provides as much flow as desired for the multiple sources 
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si, and single sink t likewise consumes as much flow as desired for the multiple sinks 

ti.

        

Figure 2.2 Converting a multiple-source, multiple-sink maximum-flow problem into 
a Problem  with  a single source and a single sink. (a) A flow network with five 

sources S = {s1, s2, s3, s4, s5} and three sinks T = {t1, t2, t3}. (b) An equivalent single-
source, single-sink flow network. 

2.3  Maximum  Flow  Problem 

The maximum flow problem is a classical optimization problem with many

applications. The problem of finding a maximum flow in a directed graph with edge 

capacities arises in many settings in operations research and other fields, and efficient 

algorithms for this problem have been studied for over four decades [4]. Recently, 

significant improvements have been made in theoretical performance of maximum 

flow algorithms.

A directed graph can be interpreted as a “flow network”. Imagine a material coursing 

through a system from a source, where the material is produced, to a sink, where it is 

consumed. The source produces the material at some steady rate, and the sink

consumes the material at the same rate. The “flow” of the material at any point in the 

system is intuitively the rate at which the material moves. Flow networks are useful to 

model situations like, liquids flowing through pipes, parts through assembly lines,

current through electrical networks, information through communication networks,

and so forth.
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Each directed edge in a flow network can be thought of as a conduit for the material. 

Each conduit has a stated capacity, given as a maximum rate at which the material can 

flow through the conduit, such as 200 gallons of liquid per hour through a pipe or 20 

amperes of electrical current through a wire. Vertices are conduit junctions, and other 

than the source and sink, material flows through the vertices without collecting in 

them. In other words, the rate at which material enters a vertex must equal the rate at 

which it leaves the vertex. We call this property “flow conservation,” and it is 

equivalent to Kirchhoff’s Current Law when the material is electrical current.

In the maximum-flow problem, the greatest rate at which material can be shipped 

from the source to the sink without violating any capacity constraints is calculated. It 

is one of the simplest problems concerning flow networks and this problem can be 

solved by efficient algorithms. Moreover, the basic techniques used in maximum-flow 

algorithms can be adapted to solve other network-flow problems [2].

Let the graph G = (V, E) be a flow network with source s, sink t, and an integer 

capacity c (u, v) on each edge (u, v) ∈ E. A flow in graph G is a real-valued function   

f : V × V → R that satisfies the following three properties:

Capacity constraint: For all u, v ∈ V, it required that f (u, v) ≤ c (u, v).

Skew symmetry: For all u, v ∈ V, it required that f (u, v) = − f (v, u).

Flow conservation: For all u ∈ V − {s, t}, it required that

∑ v ∈ V  f (u, v) = 0 .

The quantity f (u, v), which can be positive, zero, or negative, is called the flow from 

vertex u to vertex v. The value of a flow f is defined as

| f | = ∑ v ∈ V  f (s, v)

that is, the total flow out of the source. (Here, the |·| notation denotes flow value, not 

absolute value or cardinality.) The maximum flow problem is to maximize | f |, that 

is, to route as much flow as possible from s to t [12].

2.3.1 The Ford-Fulkerson Method [2]

This section presents the Ford-Fulkerson method for solving the maximum-flow 

problem. It is called a “method” rather than an “algorithm” because it encompasses 

several implementations with differing running times. The Ford-Fulkerson method 
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depends on three important ideas that transcend the method and are relevant to many 

flow algorithms and problems: residual networks, augmenting paths, and cuts. These 

ideas are essential to the important max-flow min-cut theorem, which characterizes 

the value of a maximum flow in terms of cuts of the flow network. We end this 

section by presenting one specific implementation of the Ford-Fulkerson method and 

analyzing its running time.

The Ford-Fulkerson method is iterative. We start with f (u, v) = 0 for all u, v є V, 

giving an initial flow of value 0. At each iteration, we increase the flow value by 

finding an “augmenting path,” which we can think of simply as a path from the source 

s to the sink t along which we can send more flow, and then augmenting the flow 

along this path. We repeat this process until no augmenting path can be found. The 

max-flow min-cut theorem will show that upon termination, this process yields a 

maximum flow.

Ford-Fulkerson-Method(G, s, t)

[1] initialize flow f to 0

[2] while there exists an augmenting path p

[3] do augment flow f along p

[4] return f

2.3.2 Residual Networks

Intuitively, given a flow network and a flow, the residual network consists of edges 

that can admit more flow. More formally, Let G = (V, E) a flow network with source s 

and sink t. Let f be a flow in G, and consider a pair of vertices u, v є V. The amount of 

additional flow which can be pushed from u to v before exceeding the capacity c (u, 

v) is the residual capacity of (u, v), given by 

               c f (u, v) = c (u, v) − f (u, v)                                                                    
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Figure 2.3 (a) The flow network G and flow f . (b) The residual network G f

with augmenting path p shaded; its residual capacity is c f (p) = c (v2, v3) = 4. 
(c) The flow in G that results from augmenting along path p by its residual 
capacity 4. (d) The residual network induced by the flow in (c).

For example, if c (u, v) = 16 and f (u, v) = 11, then we can increase f (u, v) by c f (u, v)

= 5 units before we exceed the capacity constraint on edge (u, v). When the flow f (u, 

v) is negative, the residual capacity c f (u, v) is greater than the capacity c (u, v). For 

example, if c (u, v) = 16 and f (u, v) = −4, then the residual capacity c f (u, v) is 20. 

This situation can be interpreted as follows. There is a flow of 4 units from v to u, 

which we can cancel by pushing a flow of 4 units from u to v. We can then push 

another 16 units from u to v before violating the capacity constraint on edge (u, v). 

We have thus pushed an additional 20 units of flow, starting with a flow f (u, v) = −4, 

before reaching the capacity constraint.

Given a flow network G = (V, E) and a flow f, the residual network of G induced by f 

is G f = (V, E f), where

E f = {(u, v) є V × V: c f (u, v) > 0} .

That is, as promised above, each edge of the residual network, or residual edge, can 

admit a flow that is greater than 0. Figure 2.3(b) [2] shows the corresponding residual 

network G f.
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The edges in E f are either edges in E or their reversals. If f (u, v) < c (u, v) for an 

edge (u, v) є E, then c f (u, v) = c (u, v) − f (u, v) > 0 and (u, v) є E f. If f (u, v) > 0 for 

an edge (u, v) є E, then f (v, u) < 0. In this case, c f (v, u) = c (v, u) − f (v, u) > 0, and 

so (v, u) є E f. If neither (u, v) nor (v, u) appears in the original network, then c (u, v)

= c (v, u) = 0, f (u, v) = f (v, u) = 0 , and c f (u, v) = c f (v, u) = 0. It can be concluded 

that an edge (u, v) can appear in a residual network only if at least one of (u, v) and 

(v, u) appears in the original network, and thus |E f| ≤ 2 |E|. 

Observe that the residual network G f is itself a flow network with capacities given by 

c f. The following lemma shows how a flow in a residual network relates to a flow in 

the original flow network.

2.3.3  Augmenting Paths [2]

Given a flow network G = (V, E) and a flow f, an augmenting path p is a simple path 

from s to t in the residual network G f. By the definition of the residual network, each 

edge (u, v) on an augmenting path admits some additional positive flow from u to v 

without violating the capacity constraint on the edge. The shaded path in Figure 2.3(b) 

is an augmenting path. Treating the residual network G f in the figure as a flow 

network, we can increase the flow through each edge of this path by up to 4 units 

without violating a capacity constraint, since the smallest residual capacity on this 

path is c f (v2, v3) = 4. We call the maximum amount by which we can increase the 

flow on each edge in an augmenting path p the residual capacity of p, given by

c f (p) = min {c f (u, v): (u, v) is on p} 

Figure 2.3(c) shows the result of adding f p in Figure 2.3(b) to f from Figure 2.3(a).

2.3.4  Cuts of Flow Networks [2]

The Ford-Fulkerson method repeatedly augments the flow along augmenting paths 

until a maximum flow has been found. The max-flow min-cut theorem, which we 

shall prove shortly, tells us that a flow is maximum if and only if its residualnetwork 

contains no augmenting path. To prove this theorem, though, we must first explore the 

notion of a cut of a flow network.
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Figure 2.4 A cut (S, T ) in the flow network of Figure 2.3 (a), where S = {s, v1, v2} 
and T = {v3, v4, t }. The vertices in S are black, and the vertices in T are white. The 
net flow across (S, T) is f (S, T) = 19, and the capacity is c (S, T) = 26.

A cut (S, T) of flow network G = (V, E) is a partition of V into S and T = V − S such 

that s є S and t є T. If f is a flow, then the net flow across the cut (S, T) is defined to be 

f (S, T). The capacity of the cut (S, T) is c (S, T). A minimum cut of a network is a 

cut whose capacity is minimum over all cuts of the network. Figure 2.4 shows the cut 

({s, v1, v2}, {v3, v4, t}) in the flow network of Figure 2.3(a). 

The net flow across this cut is   

f (v1, v3) + f (v2, v3) + f (v2, v4) = 12 + (−4) + 11 

    = 19

and its capacity is  

c (v1, v3) + c (v2, v4) = 12 + 14

        = 26

            

Observe that the net flow across a cut can include negative flows between vertices, 

but that the capacity of a cut is composed entirely of nonnegative values. In other 

words, the net flow across a cut (S, T) consists of positive flows in both directions; 

positive flow from S to T is added while positive flow from T to S is subtracted. On 

the other hand, the capacity of a cut (S, T) is computed only from edges going from S 

to T. Edges going from T to S are not included in the computation of c (S, T). 

The maximum flow in a network is bounded above by the capacity of a minimum cut 

of the network. The important max-flow min-cut theorem, which will be now stated

and proved, says that the value of a maximum flow is in fact equal to the capacity of a 

minimum cut.
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Theorem 1 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following 

conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network G f contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G [10].

2.3.5  The  Basic Ford-Fulkerson Algorithm

In each iteration of the Ford-Fulkerson method, we find some augmenting path p and 

increase the flow f on each edge of p by the residual capacity c f (p). The following 

implementation of the method computes the maximum flow in a graph G = (V, E) by 

updating the flow f [u, v] between each pair u, v of vertices that are connected by an 

edge. If u and v are not connected by an edge in either direction, we assume implicitly 

that f [u, v] = 0. The capacities c (u, v) are assumed to be given along with the graph, 

and c (u, v) = 0 if (u, v) ¢ E. The residual capacity c f (u, v) is computed in accordance 

with the formula given in section 2.3.2. The expression c f (p) in the code is actually 

just a temporary variable that stores the residual capacity of the path p.

Ford-Fulkerson(G, s, t)

[1] for each edge (u, v) є E[G]

[2] do f [u, v] ← 0

[3] f [v, u] ← 0

[4] while there exists a path p from s to t in the residual network G f

[5] do c f (p) ← min {c f (u, v) : (u, v) is in p}

[6] for each edge (u, v) in p

[7] do f [u, v] ← f [u, v] + c f (p)

[8] f [v, u]←−f [u, v]
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Figure 2.5 The execution of the basic Ford-Fulkerson algorithm. (a)–(d) 
Successive iterations of the while loop. The left side of each part shows the 
residual network G f from line 4 with a shaded augmenting path p. The right 
side of each part shows the new flow f that results from adding f p to f. The 
residual network in (a) is the input network G. (e) The residual network at the 
last while loop test. It has no augmenting paths, and the flow f shown in (d) is 
therefore a maximum flow.

The Ford-Fulkerson algorithm simply expands on the Ford-Fulkerson-Method  

pseudo code given earlier. Figure 2.5 shows the result of each iteration in a sample 

run. Lines 1–3 initialize the flow f to 0. The while loop of lines 4–8 repeatedly finds 

an augmenting path p in G f and augments flow f along p by the residual capacity        

c f (p). When no augmenting paths exist, the flow f is a maximum flow.
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2.3.5.1  Analysis of Ford-Fulkerson

The running time of Ford-Fulkerson depends on how the augmenting path p in line 4 

is determined. If it is chosen poorly, the algorithm might not even terminate: the value 

of the flow will increase with successive augmentations, but it need not even converge 

to the maximum flow value. If the augmenting path is chosen by using a breadth-first 

search , however, the algorithm runs in polynomial time. Before proving this result, 

however, a simple bound is obtained for the case in which the augmenting path is 

chosen arbitrarily and all capacities are integers [14].

Most often in practice, the maximum-flow problem arises with integral capacities. If 

the capacities are rational numbers, an appropriate scaling transformation can be used 

to make them all integral. Under this assumption, a straightforward implementation of 

Ford-Fulkerson runs in time O (E | f* | ), where f* is the maximum flow found by the 

algorithm. The analysis is as follows. Lines 1–3 take time Θ (E). The while loop of 

lines 4–8 is executed at most | f *| times, since the flow value increases by at least one 

unit in each iteration.

The work done within the while loop can be made efficient if the data structure used 

to implement the network G = (V, E) is efficiently managed. Let us assume that we 

keep a data structure corresponding to a directed graph G` = (V, E `), where E ` = {(u, 

v): (u, v) є E or (v, u) є E}. Edges in the network G are also edges in G `, and it is 

therefore a simple matter to maintain capacities and flows in this data structure. Given 

a flow f on G, the edges in the residual network G f consist of all edges (u, v) of G ` 

such that c (u, v) − f [u, v] ≠ 0. The time to find a path in a residual network is 

therefore O (V + E `) = O (E) if we use either depth-first search or breadth-first 

search. Each iteration of the while loop thus takes O (E) time, making the total 

running time of Ford-Fulkerson O (E | f *|).
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2.3.5.2  Limitation of Ford-Fulkerson Algorithm

Figure 2.6 (a) A flow network for which Ford-Fulkerson can take Θ (E| f *|) time, 
where f* is a maximum flow, shown here with | f*| = 2,000,000. An augmenting path 
with residual capacity 1 is shown. (b) The resulting residual network. Another 
augmenting path with residual capacity 1 is shown. (c) The resulting residual 
network.

When the capacities are integral and the optimal flow value | f *| is small, the running 

time of the Ford-Fulkerson algorithm is good. Figure 2.6(a) shows an example of 

what can happen on a simple flow network for which | f *| is large. A maximum flow 

in this network has value 2,000,000: 1,000,000 units of flow traverse the path s → u 

→ t, and another 1,000,000 units traverse the path s → v → t. If the first augmenting 

path found by Ford-Fulkerson is s → u → v → t, shown in Figure 2.6(a), the flow has 

value 1 after the first iteration. The resulting residual network is shown in Figure 

2.6(b). If the second iteration finds the augmenting path s → v → u → t , as shown in 

Figure 2.6(b), the flow then has value 2. Figure 2.6(c) shows the resulting residual 

network. It can be continued, choosing the augmenting path s → u → v → t in the 

odd-numbered iterations and the augmenting path s → v → u → t in the even-

numbered iterations. So, it would perform a total of 2,000,000 augmentations, 

increasing the flow value by only 1 unit in each [8].

2.3.6 The Edmonds-Karp Algorithm

The bound on Ford-Fulkerson can be improved if we implement the computation of 

the augmenting path p in line 4 with a breadth-first search, that is, if the augmenting 

path is a shortest path from s to t in the residual network, where each edge has unit 

distance (weight). The Ford-Fulkerson method so implemented is called the 

Edmonds-Karp algorithm. Now it is proved that the Edmonds-Karp algorithm runs in 

O (VE2) time. The analysis depends on the distances to vertices in the residual 

network G f [15].
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Theorem 2

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and 

sink t, then the total number of flow augmentations performed by the algorithm is     

O (V E).

Since each iteration of Ford-Fulkerson can be implemented in O (E) time when the 

augmenting path is found by breadth-first search, the total running time of the 

Edmonds-Karp algorithm is O (V E2) [6].

2.4  Bipartite Matching [2]

Some combinatorial problems can easily be cast as maximum-flow problems. The 

multiple-source, multiple-sink maximum-flow problem gave us one example. There 

are other combinatorial problems that seem on the surface to have little to do with 

flow networks, but can in fact be reduced to maximum-flow problems. This section 

presents one such problem: finding a maximum matching in a bipartite graph. In order 

to solve the problem, we shall take advantage of an inte grality property provided by 

the Ford-Fulkerson method. We shall see that the Ford-Fulkerson method can be 

made to solve the maximum bipartite-matching problem on a graph G = (V, E) in      

O (VE) time.

2.4.1  The  Maximum  Bipartite  Matching Problem

Given an undirected graph G = (V, E), a matching is a subset of edges M ⊆ E such 

that for all vertices v є V, at most one edge of M is incident on v. A vertex v є V is 

matched by matching M if some edge in M is incident on v; otherwise, v is 

unmatched. A maximum matching is a matching of maximum cardinality, that is, a 

matching M such that for any matching M `, |M| ≥ |M `|.
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Figure 2.7 A bipartite graph G = (V, E) with vertex partition V = L U R. A matching 
with cardinality 2. (b) A maximum matching with cardinality3.

In this section, attention is restricted to finding max. matchings in bipartite graphs. It 

is assumed that vertex set can be partitioned into V = L U R, where L and R are disjoint 

and all edges in E go between L and R. It is further assume that every vertex in V has 

at least one incident edge. Figure 2.7 illustrates the notion of a matching.

The problem of finding a maximum matching in a bipartite graph has many practical 

applications. As an example, consider matching a set L of machines with a set R of 

tasks to be performed simultaneously. The presence of edge (u, v) in E is taken to 

mean that a particular machine u є L is capable of performing a particular task v є R. 

A maximum matching provides work for as many machines as possible.

2.4.2 Finding  Maximum  Bipartite Matching

The Ford-Fulkerson method can be used to find a maximum matching in an 

undirected bipartite graph G = (V, E) in time polynomial in |V| and |E|. The trick is to 

construct a flow network in which flows correspond to matchings, as shown in Figure 

2.8. The corresponding flow network G ` = (V `, E `) for the bipartite graph G is 

defined as follows. Let the source s and sink t be new vertices not in V, and let V `= V

U {s, t}. If the vertex partition of G is V = L U R, the directed edges of G ` are the 

edges of E, directed from L to R, along with V new edges:

E ` = {(s, u): u є L}

        ∪ {(u, v): u є L, v є R, and (u, v) є E}

        ∪ {(v, t): v є R}.
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Figure 2.8 The flow network corresponding to a bipartite graph. (a) The bipartite 

graph G = (V, E) with vertex partition V = L U R from Figure 26.7. A maximum 
matching is shown by shaded edges. (b) The corresponding flow network G ` with a 
maximum flow shown. Each edge has unit capacity. Shaded edges have a flow of 1, 
and all other edges carry no flow. The shaded edges from L to R correspond to those 
in a maximum matching of the bipartite graph.

To complete the construction, unit capacity is assigned to each edge in E_. Since each 

vertex in V has at least one incident edge, |E| ≥ |V| /2. Thus, |E| ≤ |E `| = |E| + |V| ≤ 3 

|E|, and so |E `| = Ө (E) [9].

2.5  Minimum Cost Flow [1]

To solve a Minimum Cost Flow problem need only construct a flow network graph 

and ensure that it satisfies the criteria discussed earlier—capacity constraint, flow 

conservation, and skew symmetry—as well as two additional criteria:

Supply satisfaction

For each source vertex si є S, the sum of f (si, v) for all edges (si, v) є E (the flow out 

of si) minus the sum of f (u, si) for all edges (u, si) є E (the flow into si) must be less 

than or equal to sup(si). That is, the supply sup(si) at each source vertex is a firm 

upper bound on the net flow from that vertex.

Demand satisfaction

For each sink vertex tj є T, the sum of f (u, tj) for all edges (u, tj) є E (the flow into tj) 

minus the sum of f (tj, v) for all edges (tj, v) є E (the flow out of tj) must be less than 

or equal to dem(tj). That is, the dem(tj) at each target vertex is a firm upper bound on 

the net flow into that vertex.
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To simplify the algorithmic solution, the flow network graph is further constrained to 

have a single source vertex and sink vertex. This can be easily accomplished by 

taking an existing flow network graph with any number of source and sink vertices 

and adding two new vertices. First, add a new vertex (which we refer to as s0) to be 

the source vertex for the flow network graph, and add edges (s0,si) for all si є S whose 

capacity c (s0,si) = sup(si) and whose cost d(s0,si) = 0. Second, add a new vertex 

(which is often referred to as tgt, for target) to be the sink vertex for the flow network 

graph, and add edges (tj, tgt) for all tj є T whose capacity c (tj, tgt) = dem(tj) and 

whose cost d(t0,tj) = 0. Adding these vertices and edges does not increase the cost of 

the network flow, nor do they reduce or increase the final computed flow over the 

network.

The supplies sup(si), demands dem(tj), and capacities c (u, v) are all greater than 0. 

The shipping cost d (u, v) associated with each edge may be greater than or equal to 

zero. When  resulting flow is computed, all f (u, v) values will be greater than or equal 

to 0.

Figure 2.9 [1] shows the side-by-side computation on a small example comparing a

straightforward Maximum Flow computation with a Minimum Cost Flow

computation. The result, at the bottom of the figure, is the maximum flow found by 

each approach.

In this example, there are two factories in Chicago (v1) and Washington, D.C. (v2) that 

can each produce 300 widgets daily. The shipping manager in charge of two factories

must ensure that two customers in Houston (v3) and Boston (v4) each receive 300

widgets a day. Manager has several options for shipping, as shown in the figure. For

example, between Washington, D.C. and Houston, he may ship up to 280 widgets 

daily at $4 per widget, but the cost increases to $6 per widget if he ship from

Washington, D.C. to Boston (although he can then send up to 350 widgets per day 

along that route).
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Figure 2.9 Side-by-side computation showing difference when considering the minimum cost 

                   flow
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It may not even be clear that Ford-Fulkerson can be used to solve this problem, but

note that we can create a graph G with a new source vertex s0 that connects to the two 

factory nodes (v1 and v2) and the two customers (v3 and v4) connect to a new sink

vertex t5. On the left hand side of Figure 2.9, the Edmonds-Karp variation is executed

to demonstrate that we can meet all of our customer needs as requested, at the total

daily shipping cost of $3,600. To save space, the source and sink vertices s0 and t5 are 

omitted. During each of the four iterations by Ford-Fulkerson, the impact of the

augmented path is shown (when an iteration updates the flow for an edge, the flow

value is shaded gray).

Is this the lowest cost we can achieve? The right-hand side of Figure 2.9 shows the 

execution of Ford Fulkerson using short path as the search strategy. Note how the first 

augmented path found takes advantage of the lowest-cost shipping rate. Also shortest 

path only uses the costliest shipping route from Chicago (v1) to Houston (v3) when 

there is no other way to meet the customer needs; indeed, when this happens, note 

how the augmented path reduces the existing flows between Washington, D.C. (v2)

and Houston (v3), as well as between Washington, D.C. (v2) and Boston (v4).

Now the constructions can be presented that allow solving each of the remaining flow 

network problems listed in Figure 1.1. For each problem it is described that how to 

reduce the problem to Minimum Cost Flow.

2.6  Transshipment Problem [1]

There exists m supply stations si, each capable of producing sup(si) units of a 

commodity. There are n demand stations tj, each demanding dem(tj) units of the 

commodity. There are w warehouse stations wk, each capable of receiving and 

reshipping (known as “transshipping”) a maximum maxk units of the commodity at 

the fixed warehouse processing cost of wpk per unit. There is a fixed shipping cost of 

d (i, j) for each unit shipping from supply station si to demand stations tj, a fixed 

transshipping cost of ts (i, k) for each unit shipped from supply station si to warehouse 

station wk, and a fixed transshipping cost of ts (k, j) for each unit shipped from 

warehouse station wk to demand station tj. The goal is to determine the flow f (i, j) of
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units from supply station si to demand station tj that minimizes the overall total cost, 

which can be concisely defined as:

Total Cost (TC) = Total Shipping Cost (TSC) + Total Transshipping Cost (TTC)

TSC = Σ i Σ j d (i, j)*f (i, j)

TTC = Σi Σk ts (i, k) * f (i, k) + Σj Σk ts (j, k) * f (j, k)

The goal is to find integer values for f (i, j) ≥ 0 that ensure that TC is a minimum 

while meeting all of the supply and demand constraints. Finally, the net flow of units 

through a warehouse must be zero, to ensure that no units are lost (or added!). The 

supplies sup(si) and demands dem(ti) are all greater than 0. The shipping costs d (i, j), 

ts (i, k), and ts (k, j) may be greater than or equal to zero.

       

Figure 2.10   Sample Transshipment problem instance converted to Minimum Cost 

                                    Flow problem instance
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Solution

The Transshipment problem instance can be converted into Minimum Cost Flow

problem instance as shown in Figure 2.10 [1] by constructing a graph G = (V, E) such 

that:

V contains n + m + 2 * w + 2 vertices

Each supply station si maps to a vertex numbered i. Each warehouse wk maps

to two different vertices, one numbered m + 2 * k – 1 and one numbered m + 2

* k. Each demand station tj maps to 1 + m + 2 * w + j. Create a new source 

vertex src (labeled 0) and a new target vertex tgt (labeled n + m + 2 * w + 1).

E contains (w + 1) * (m + n) + m * n + w edges

The process for constructing edges from the Transshipment problem instance

can be found in the Transshipment class in the code repository.

Once the Minimum Cost Flow solution is available, the transshipment schedule can 

be constructed by locating those edges (u, v) є E whose f (u, v) > 0. The cost of the

schedule is the sum total of f (u, v) * d (u, v) for these edges.

2.7  Transportation Problem [20]

The Transportation problem instance can be converted into a Transshipment problem 

instance with no intermediate warehouse nodes [1]. The transportation problem is 

simple in form, but surprisingly useful in practice.  It consists of a set of sources of 

some product (e.g. factories producing canned vegetables), which are directly linked 

to sinks of the product (e.g. markets in various cities which buy the canned 

vegetables).   Each link has an associated cost per unit of flow (e.g. cost per delivered 

truckload in this case). 

  

Consider the example in Figure 2.11 [20], which has three factories (A, B, and C) 

shipping to three markets (D, E, and F).  The “transportation arcs” are the arcs which 

directly connect the sources (factories) to the sinks (markets); these are labeled only 

with the cost per unit of flow because the lower flow bounds are all at the default of 

zero, and the upper flow bounds are all at the default of infinity.
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Figure 2.11 A simple transportation model. The transportation arcs are labeled 
                     with the cost per unit of flow

The question in this case is: how many truckloads per day should be produced at each 

factory and shipped to each sink to meet the market demands at minimum total cost?  

After solution, the flows in the transportation arcs will be known; hence the number 

of truckloads to ship from each factory to each market will be known.

It’s always good to give a network model of this type a simple “idiot test” at first 

glance. Figure 2.11 shows that the factories can produce up to a total of 11 units of 

flow while the markets demand exactly nine units of flow.  This model passes the 

idiot test: there is sufficient supply to meet the demand.  Of course, the model may 

fail for other reasons, e.g. the demand at a particular market cannot be met from the 

supply available to it.  The linear programming solver will detect any of these 

problems, and appropriate infeasibility analysis routines can be brought into play. 

2.8  The Assignment  Problem [20]

Assignment problem is simply a more restricted version of the Transportation 

problem: each supply node must supply only a single unit, and the demand for each 

demand node is also one.

The assignment problem is a classic that also appears in the integer programming 

literature.  In the usual form of the problem, there is a need to assign a set of people to 

a set of tasks.  Each person takes a certain number of minutes to do a certain task, or 

cannot do a particular task at all, and each person can be assigned to exactly one task.  
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How should the people be assigned to the tasks to minimize the total time taken to do 

all of the tasks? 

The data for an assignment problem is often collected in a table, as shown in table 2.1 

for example. The number in each cell indicates the number of minutes required for a 

particular person to do a particular task.  The notation “NA” in a cell indicates that the 

associated person cannot do the task associated with the cell. It’s not obvious how to 

assign the people to the tasks by simple inspection of the table.  For example, it may 

be tried looking at each task and simply choosing the best person for that task.  But as 

it can be seen, person A is the best for tasks 2, 3, and 4.  How should the tie be 

broken?  Other ad hoc procedures also soon run into trouble.  A more organized 

approach is needed. 

                                             

  

Table  2.1 Person-task relationship for assignment problem 

Solution

The Assignment problem instance can be converted into a transportation problem 

instance, with the restriction that the supply nodes provide a single unit and the 

demand nodes require a single unit [1].

               

Figure 2.12 The assignment problem cast as a transportation network

Task 1 Task 2 Task 3 Task 4

Person A NA 9 7 13

Person B 16 13 8 NA

Person C 10 NA 6 15

Person D 11 NA 13 17                                                                       
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Each person is modeled as a source node which introduces exactly one unit of flow 

into the network, and each task is modeled as a sink node which removes exactly one 

unit of flow from the network, as shown in Figure 2.12 [20]. Each arc has the default 

upper and lower flow bounds, but the cost per unit of flow is set equal to the number 

of minutes for the person to do the job.  To avoid diagram clutter, each arc is labelled

only with the cost per unit of flow. 

After the solution of the resulting network linear program, the flows in the arcs (i.e. 

the values of the variables in the linear program) will be known.  The flow in any arc 

will be exactly zero or exactly one. It’s because (i) the unimodularity property 

restricts the arc flows to integer values because all of the node equations have integer 

constants, and (ii) the sources and sink nodes in the model all have inflows or 

outflows of exactly one unit of flow.  Given this, the optimal set of assignments is 

shown by the arcs that have a positive flow.  Each positive-flow arc indicates a 

person-to-task assignment that should be made.  The objective function value gives 

the minimum total time associated with this assignment.

A straightforward variation of the assignment problem is the case in which there are 

more people than jobs. This is easy to handle simply by making each person the 

source of up to one unit of flow, by labelling the phantom arc associated with each 

person as [0,1,0]. 
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Chapter 3

Problem Statement

Maximum flow problem is the classical network flow problem and once, it is solved 

other network flow problems can be converted into maximum flow problem. So 

among all the network flow problems, maximum flow problem is selected to be 

solved. Now the problem is to calculate the maximum flow value in the flow network 

graph which can be moved from source to sink without violating any capacity 

constraint. Any real world problem can be taken into as instance.

INSTANCE : Suppose one pipeline system is there in mumbai to supply water  

in different areas  of mumbai. The pipeline between any two areas has a stated

capacity in gallons per hour, given as a maximum flow at which water can flow 

through the pipe between those two areas. Now, suppose we want to supply water 

from the source area, say A to the sink area, say I and water passes through 7 other 

areas before reaching from source to sink. Suppose these 7 areas are B, C, D, E, F, G, 

H and pipeline between any two areas has defined capacity. So, the problem is to 

calculate the maximum amount of water which can flow from A to I.

OUTPUT: Output is the maximum amount of water in gallons per hour which 
can flow from A to I.

3.1  Methodology

The following steps are carried out to solve the problem. 

 First of all, the problem discussed in the INSTANCE is converted into 

directed graph by representing area as a vertex of the graph and pipeline 

between any two areas as an edge of the graph. 

 The capacity of the pipeline in gallons per hour is represented as capacity of 

an edge in units. 

 Then new modified algorithm of the existing algorithm is designed.

 After this the problem is solved using both algorithms and comparison is done 

between them.

 Finally, the problem is implemented using implementation code of the new 

algorithm to achieve the desired output.     
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Chapter 4

Design and Implementation

4.1  Converting the Problem into Graph

 Now the problem discussed in the INSTANCE is converted into directed 

graph by representing areas as vertices of the graph and pipelines between 

any two areas as edges of the graph. 

 The capacity of the pipeline in gallons per hour is represented as capacity 

of an edge in units between vertices. 

Now, the following table shows the defined capacities of each pipeline between any 

two areas which can flow between corresponding two areas. That is the following 

table is the input file to the problem discussed in INSTANCE.

Source Area Destination 
Area       

Capacity
(gallons/hour)

A    B 34
A B 20
A E 35
B D 20
B E 8
C E 8
C F 15
D F 10
D G 22
D H 18
E D 35
E F 15
F H 35
G I 48
H G 20
H I 30

             Table 4.1 Defined capacities of each pipeline between two areas.  

Let the graph G = (V, E) be a flow network with source s, sink t, and an integer 

capacity c (u, v) on each edge (u, v) ∈E. Let C = max (u, v) ∈E c (u, v).



31

Now, following correspondence between areas and vertices is used to create a graph.

Area Vertex

A S
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I T

                Table 4.2 Correspondence between areas and vertices

So, the initial graph corresponding to the tables 4.1 and 4.2 is as follows.

            

         Figure 4.1 The initial flow network corresponding to the problem to be solved

Now the modified Edmonds-Karp Method is given below which can be used to 
compute a maximum flow in G.

Algorithm 4.1 MOD_EDMONDS-KARP (G, s, t)

[1]  for each edge (u, v) є E[G]   [First initialize the flow f  to 0]

[2]  do f [u, v] ← 0  

[3]      f [v, u] ← 0

[4]  C ← max(u, v)∈ E c (u, v)

[5]  I ← 2floor(log
2

C)

[6]  while I ≥ 1

[7]         do while there exists an augmenting path p from s to t in the residual   
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                    network Gf of capacity atleast I

[8]  do c f (p) ← min {c f (u, v) : (u, v) is in p}

[9]       for each edge (u, v) in p

[10]  do f [u, v] ← f [u, v] + c f (p)

[11]                                   f [v, u]←−f [u, v]

[12]  I = I/2

[13]  return  f

4.2  Solution using Modified Edmonds-Karp Algorithm

Now, the maximum capacity of the graph is 48. So, the value of the variable C in the 

above algorithm will be 48. 

So, 2floor(log
2

C) = 32, 

        which will be value of the variable I in the 1st iteration of the algorithm.   

1st Iteration: I = 32.

 So, the augmenting path with capacity at least 32 will be searched by the 

Breadth First Search procedure. But, there is no augmenting path with 

capacity at least 32.

 So, no flow will be added to the initial flow of the graph which is 0.

2nd Iteration: I = I/2 = 32/2 = 16.                                          

 So, now the augmenting path with capacity at least 16 will be searched by the 

same BFS procedure in the residual graph which is given below in Figure 4.2

corresponding to the initial graph.

 The augmenting path will be searched till path with capacity at least 16 is 

found in the graph.

 Now, in the consecutive figures, the left side figure shows the residual graph 

and the right side figure shows the corresponding flow in the graph. 
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Figure 4.2 Residual Graph before any augmentation and flow graph after 1st augmentation 

Whenever the augmenting path is to be found in the graph, if there are more than 1 

path satisfying the capacity criteria, then the path is determined by BFS procedure on 

the basis of sequential ordering of the vertices and corresponding edges which has 

been given as input.

1st augmentation:

 So, the augmenting path found in 2nd iteration is s-v1-v3-v6-t with capacity 

20.

 So, the initial flow is augmented by 20 units and the flow in the graph is 

shown in the above right side figure 4.2 giving maximum flow value f =20.

 The residual graph after 1st augmentation is shown below in Figure 4.3. 

   

  

Figure 4.3 Residual Graph after 1st augmentation and flow graph after 2nd augmentation 

2nd augmentation:

 Now, again there is a path with capacity at least 16 and the path found in the 

same 2nd iteration is s-v4-v3-v7-t with capacity 18.
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 So, the maximum flow is augmented by 18 units and the flow in the graph is 

shown in the above figure 4.3 giving maximum flow value f = 20 + 18 = 38. 

 Now, there is no path with capacity at least 16.  

Same procedure will be followed until variable I becomes < 1. 

3rd Iteration: I = I/2 = 16/2 = 8.                                          

 So, now the augmenting path with capacity at least 8 will be searched.

 The residual graph after 2nd augmentation is shown below in figure 4.4. 

  

Figure 4.4 Residual Graph after 2nd augmentation and flow graph after 3rd augmentation 

3rd augmentation:

 The augmenting path found in 3rd iteration is s-v2-v5-v7-t with capacity 12.

 So, the maximum flow is augmented by 12 units and the flow in the graph is 

shown in the above figure 4.4 giving maximum flow value f = 38 + 12 = 50.

 The residual graph after 3rd augmentation is shown below in figure 4.5.   

  

Figure 4.5 Residual Graph after 3rd augmentation and flow graph after 4th augmentation 
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4th augmentation:

 Now, again there is a path with capacity at least 8 and the path found in the 

same 3rd iteration is s-v4-v5-v7-v6-t with capacity 15.

 Maximum flow value f = 50 + 15 = 65.

 Now, there is no path with capacity at least 8.  

4th Iteration: I = I/2 = 8/2 = 4.                                          

 Now the augmenting path with capacity at least 4 will be searched.

 The residual graph after 4th augmentation is shown below in figure 4.6. 

  

Figure 4.6 Residual Graph after 4th augmentation and flow graph after 5th augmentation 

5th augmentation:

 The augmenting path found in 4th iteration is s-v1-v4-v3-v5-v7-v6-t with 

capacity 4.

 Maximum flow value f = 65 + 5 = 70.

 Now, there is no path with capacity at least 4. 

5th Iteration: I = I/2 = 4/2 = 2.                                          

 Now the augmenting path with capacity at least 2 will be searched.

 The residual graph after 5th augmentation is shown below 4.7. 
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Figure 4.7 Residual Graph after 5th augmentation and flow graph after 6th augmentation 

6th augmentation:

 The augmenting path found in 5th iteration is s-v2-v4-v3-v6-t with capacity 2.

 Maximum flow value f = 70 + 2 = 72.

 Now, there is no path with capacity at least 2. 

6th Iteration: I = I/2 = 2/2 = 1.                                          

 Now the augmenting path with capacity at least 1 will be searched.

 The residual graph after 6th augmentation is shown below in figure 4.8. 

           

                       Figure 4.8 Residual Graph after 6th augmentation 

Now, there is no path with capacity at least 1. So, no augmentation is possible in 6th

iteration.

Now, I = I/2 = 1/2 = 0. So, here the algorithm halts and the resulting flow in graph 

returns the maximum flow.

So, Maximum flow value f = 72.
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4.3  Solution using Edmonds-Karp Algorithm

Now, if the same problem is solved using Edmonds-Karp algorithm, then the 

maximum flow is calculated as shown below.

Consider the same graph as in figure 4.1.

              

  Figure 4.1 The initial flow network corresponding to the problem to be solved

Whenever there are more than 1 path satisfying the BFS search criteria, the path is 

determined by BFS procedure on the basis of sequential ordering of the vertices and 

corresponding edges which has been given as input.

1st Iteration

 The augmenting path found is s-v1-v3-v6-t with capacity 20.

 Maximum flow value f = 20  

2nd Iteration

 The augmenting path found is s-v2-v5-v7-t with capacity 15.

 Maximum flow value f = 20 + 15 = 35

3rd Iteration

 The augmenting path found is s-v4-v3-v6-t with capacity 2.

 Maximum flow value f = 35 + 2 = 37

4th Iteration

 The augmenting path found is s-v4-v3-v7-t with capacity 15.

 Maximum flow value f = 37 + 15 = 52

5th Iteration

 The augmenting path found is s-v4-v3-v7-v6-t with capacity 3.

 Maximum flow value f  = 52 + 3 = 55
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6th Iteration

 The augmenting path found is s-v4-v5-v7-v6-t with capacity 15.

 Maximum flow value f  = 55 + 15 = 70

7th Iteration

 The augmenting path found is s-v1-v4-v3-v5-v7-v6-t with capacity 2.

 Maximum flow value f  = 70 + 2 = 72

Now, there is no augmenting path with capacity at least 1. So, here the algorithm halts 

and the resulting flow in graph returns the maximum flow.

Thus, Maximum flow value f = 72.

4.4  Discussion and Results

In the modified algorithm, 0 or more augmentation (increment in the current flow) is

possible in the same iteration while in the Edmonds-Karp algorithm, only 1

augmentation is possible in each iteration. 

The following table shows the comparison between two algorithms and also shows

the above fact.

Iteration 

No.

Modified Edmonds-Karp

(No. of augmentation)

Edmonds-Karp

(No. of augmentation)

1st 0 1

2nd 2 1

3rd 2 1

4th 1 1

5th 1 1

6th 0 1

7th Halts in 6th Iteration 1

        Table 4.3 Iteration – augmentation comparison of two algorithms for the problem

 As the table shows, the modified algorithm calculates the maximum flow

after 6 augmentations with 6 iterations while the Edmonds-Karp algorithm

calculates the maximum flow after 7 augmentations with 7 iterations.
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 Thus, it can be seen that for such a graph with less vertices also, the modified 

algorithm takes 1 less iteration than the Edmonds-Karp algorithm.

 And if the no. of vertices in the graph is much larger, then the modified 

algorithm will perform extremely better than the Edmonds-Karp algorithm.

 The Edmonds-Karp algorithm runs in O (E2V) while the modified algorithm 

runs in O (E2log2C) where C is maximum edge capacity in the graph.   

 Hence it can be said that the modified algorithm will perform better than 

Edmonds-Karp algorithm for any graph where V > log2C and this condition 

generally holds for most graphs and if no. of vertex (V) is more, then 

obviously no. of edges (E) will be more.

The following table shows some cases of graph where it can be seen that even though 

the difference between V and log2C is less, the difference between E2log2C and E2V 

considerably larger because of E2.

No. of 

vertices V

No. of 

edges E

Maximum 

capacity C 

log2C E2log2C E2V

15 25 128 7 4375 9375

10 18 75 6.229 2018 3240

12 20 30 4.907 1963 4800

15 23 32 5 2645 7935

                 Table 4.4 Comparison of complexities of two algorithms

Though the modified algorithm performs better in most cases, in some cases where 

the maximum capacity of the graph is larger compared to no. of vertices in the graph 

then this algorithm is less suitable. In those cases, Edmonds-Karp and Ford-Fulkerson 

algorithms can perform better.  
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4.5 Some  Other Results

The modified Edmonds-Karp algorithm returns a maximum flow

 This algorithm uses the Ford-Fulkerson method. It repeatedly augments the 

flow along an augmenting path until there are no augmenting paths of capacity 

greater ≥ 1. 

 Since all the capacities are integers, and the capacity of an augmenting path is 

positive, this means that there are no augmenting paths whatsoever in the 

residual graph. 

 Thus, by the max-flow min-cut theorem, the modified Edmonds-Karp 

algorithm returns a maximum flow.

For a given number I, an augmenting path of capacity at least I can be found in 

O (E) time, if such a path exists.

 The capacity of an augmenting path is the minimum capacity of any edge on 

the path, so we are looking for an augmenting path whose edges all have 

capacity at least I. 

 Do a breadth-first search or depth-first-search as usual to find the path,

considering only edges with residual capacity at least I. (Treat lower-capacity

edges as though they don’t exist.) 

 This search takes O (V + E) = O (E) time. (Note that |V| = O (E) in a flow 

network.)

The new modified Edmonds-Karp algorithm runs in O (E2log2C)

 Now, consider the algorithm 4.1 given at the starting of this chapter.

 The time complexity is dependent on the loop of steps 6-12 because the steps 

1-5 take O (E) time.

 The outer while loop executes O (logC) times, since I is initially O (C) and is 

halved on each iteration, until K < 1. The inner while loop executes O (E)

times for each value of I and as shown in above result each iteration takes     

O (E) time. 

 Thus, the total time is O (E2 log2C).
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4.6  Implemetation

The modified Edmonds-Karp algorithm can be applied to any graph to calculate the 

maximum flow value which can be moved from source to sink in the graph. The 

implementation code in C language is given in Appendix A. Implementation code 

reads the data from input file maxflow.in. Finally, the output file shows the maximum 

flow value and execution of the implementation code. Input file and output file are 

also shown in Appendix A.  
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Chapter 5

Conclusion and Future Scope

The basic classical techniques used in maximum-flow algorithms can be adapted to 

solve other network-flow problems aslo. By solving maximum flow problem we can 

consider a class of similar problems that seek to maximize the flow through a flow 

network while at the same time minimizing the cost of that flow. So it can be 

concluded that computing the Maximum Flow in the flow network graph produces a 

maximal matching set for the original Bipartite Matching problem. And on further 

reflections, it can be used to solve the more powerful Minimal Cost Flow problem, 

which enables us to immediately solve the Transshipment, Transportation, and 

Assignment problems.

The modified Edmonds-Karp algorithm returns a maximum flow and as discussed in 

the previous chapter, we can say that this algorithm takes less no. of iterations and 

less augmentation to calculate the maximum flow. An augmenting path of desired 

capacity in each iteration can be found in O (E) time, if such a path exists. The new 

modified algorithm runs in O (E2log2C) while Edmonds-Karp algorithm runs in O

(E2V). So, finally it can be concluded that the modified Edmonds-Karp algorithm 

performs better in most cases compared to Edmonds-Karp algorithm.

5.1  Future Scope

 The Ford Fulkerson algorithm is the general algorithm to solve the network 

flow problems and its improvement is Edmonds-Karp algorithm which 

performs better than it.

 In this thesis, the new modified algorithm is designed and implemented and 

proved that in most cases it performs better than Edmonds-Karp. Some other 

algorithms with approximately equivalent complexities are also available.

 So, In future more optimized algorithms can be developed to solve the 

network flow problems in more efficient manner.    
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Appendix A

A.1  Implemetation Code

#include <stdio.h>
#include <conio.h>
#include<math.h>

#define UNVISITED 0
#define VISITED 1
#define PROCESSED 2
#define MAX_NODES 100
#define temp 500

int n;  // number of nodes
int e;  // number of edges
int MaxCap[MAX_NODES][MAX_NODES]; // MaxCap matrix
int CurrentFlow[MAX_NODES][MAX_NODES];     // CurrentFlow matrix
int Status[MAX_NODES]; // needed for breadth-first search
int Preceding[MAX_NODES];  // array to store augmenting path

int head,tail,I;
int q[MAX_NODES];

void ReadInputFile()
{
        int a,b,c,i,j;
        FILE* input = fopen("C:\\Users\\Tiya\\Desktop\\maxflow.in","r");
        // read number of nodes and edges
        fscanf(input,"%d %d",&n,&e);
        // initialize empty MaxCap matrix
        for (i=0; i<n; i++)
        {

for (j=0; j<n; j++)
MaxCap[i][j] = 0;                               

         }
         // read edge capacities
         for (i=0; i<e; i++)
         {

fscanf(input,"%d %d %d",&a,&b,&c);
MaxCap[a][b] = c;

         }
        fclose(input);
}

void Enqueue (int x)
{
        q[tail] = x;
       tail++;
       Status[x] = VISITED;
}



47

int Dequeue ()
{
       int x = q[head];
       head++;
       Status[x] = PROCESSED;
        return x;
}

int BreadthFirstSearch (int start, int target)
{
        int u,v;
       for (u=0; u<n; u++)
       {

Status[u] = UNVISITED;
        }
        head = tail = 0;
        Enqueue(start);
        Preceding[start] = -1;
        while (head!=tail)
        {

u = Dequeue();
// Search all adjacent white nodes v. If the MaxCap
// from u to v in the residual network is positive,
// enqueue v.
for (v=0; v<n; v++)
{

if(Status[v]==UNVISITED && MaxCap[u][v]-CurrentFlow[u][v]>=I)
{

Enqueue(v);
Preceding[v] = u;

}
}

        }
        // If the status of the target node is processed now,
        // it means that we reached it.
        return Status[target]==PROCESSED;
}

int min (int x, int y)
{
       return x<y ? x : y;  // returns minimum of x and y
}

int MaximumFlow (int source, int sink)
{
       int i,j,u,max,p=1,q=1;
       // Initialize empty currentflow.
       int MaxFlow = 0;
       for (i=0; i<n; i++)
        {

for (j=0; j<n; j++)
CurrentFlow[i][j] = 0;

        }



48

       // While there exists an augmenting path,
       // increment the currentflow along this path.
       max=-1;
        for(i=0;i<n;i++)
       {

for(j=0;j<n;j++)
{

if(max<MaxCap[i][j])
max=MaxCap[i][j];

}
        }
       I=pow(2,floor((log(max)/log(2))));
       while(I>=1)
       {

printf("Iteration %d : I is %d\n",q++,I);
while (BreadthFirstSearch(source,sink))
{

// Determine the amount by which we can increment the currentflow.
int increment = temp;
for (u=n-1; Preceding[u]>=0; u=Preceding[u])
{

increment = min(increment,MaxCap[Preceding[u]][u]-         
                                                                CurrentFlow[Preceding[u]][u]);

}
// Now increment the currentflow.
printf("Augmentation %d is : %d\n",p++,increment);
for (u=n-1; Preceding[u]>=0; u=Preceding[u])
{

CurrentFlow[Preceding[u]][u] += increment;
CurrentFlow[u][Preceding[u]] -= increment;

}
MaxFlow += increment;

}
printf("\n\n");
I=I/2;

        }
// No augmenting path anymore. We are done.
return MaxFlow;

}

int main ()
{
       ReadInputFile();
       printf("The Maximum Flow value in the Flow Network is : %d   
                     units\n",MaximumFlow(0,n-1));
       getch();
        return 0;
}
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A.2  Input File
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A.3  Output File
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